Packing for INDION® Resins											
Moist	Resins	Dry Resins									
HDPE liner bags	25 / 50 lts	Dry Beads									
LDPE liner bags	1 cft / 25 lts	HDPE carbouys with									
Super sack	35 cft / 40 cft / 42 cft / 1000 lts	inner double plastic liner bags	25 / 50 kgs								
MS drums with liner bags	200 / 180 lts										
Fibre drums with liner bags	7 cft	Dry Powders									
PVC jars with liner bags	5 / 6 lts	HDPE carbouys with									
HDPE drums with liner bags	50 / 100 / 180 lts	inner double plastic liner bags	6 / 20 / 40 kgs								
Vaccum packing with LDPE bags	1 cft / 25 lts										

Protection of Ion Exchange Resins during Storage

Ion exchange resins, supplied in dry or moist condition, require proper care at all times. Always keep the resins drums / bags closed and in shade at a temprature between 10°C and 40°C.

Moist Resins: Resins which are supplied in moist condition should not be allowed to dry. Regularly open the drums / bags and check the condition of the resins. If the resin is not moist enough, add demineralised water to keep it in completely moist condition. Dry Resins: Resins which are supplied as dry beads or dry powders should not be allowed to come in contact with moisture.

Measurement

Moist Resins: All water treatment resins and resins supplied in moist condition are generally sold on volume basis. The volume is measured in a column after backwashing, settling and draining of water to the bed surface. Dry Resins: All dry resins are sold on weight basis.

Warning

Strong oxidising agents such as nitric acid, degrade ion exchange resins to a considerable extent. This may result in an explosive reaction. Thus, before using strong oxidising agents, consult sources knowledgeable in handling of such material.

Our state-of-the-art manufacturing facilities are ISO 9001, ISO 14001 & ISO 45001 certified

To the best of our knowledge the information contained in this publication is accurate. Ion Exchange (India) Ltd. maintains a policy of continuous development and reserves the right to amend the information given herein without notice. Please contact our regional / branch offices for current product specifications.

INDION is the registered trademark of Ion Exchange (India) Ltd.

ION EXCHANGE (INDIA) LTD.

International Division

R-14, T.T.C MIDC, Thane - Belapur Road, Rabale,

Navi Mumbai - 400 701 | Tel: +91 22 6857 2400 E-mail: export.sales@ionexchange.co.in

Overseas Offices

Bangladesh | Canada | Indonesia | Kenya

Malaysia | Oman | Portugal | Saudi Arabia | Singapore

South Africa | Sri Lanka | Tanzania | Thailand | UAE | USA

Corporate Office

Ion House, Dr. E. Moses Road, Mahalaxmi, Mumbai - 400011 | Tel: +91 22 6231 2000 E-mail: ieil@ionexchange.co.in

Regional and Branch Offices

Bengaluru | Bhubaneswar | Chandigarh | Chennai Delhi | Hyderabad | Kolkata | Lucknow | Vadodara Vashi | Visakhapatnam

Manufacturing Units India - Ankleshwar | Hosur | Patancheru | Rabale | Verna | Wada Overseas - Bangladesh | Indonesia | Saudi Arabia | UAE All India Service and Dealer Network

www.ionexchangeglobal.com | www.ionresins.com

f in 🛞 🖸

R8-0124-1.0K 031

Wide Range. Extensive Applications.

A complete range of cation & anion resins for water and waste water treatment as well as a host of speciality applications - pharmaceutical excipients, catalysts, nuclear grade resins, chelating resins for brine softening and heavy metal removal, adsorbent grade resins, resins for removal of colour, odour, organics, nitrate & tannin, resins for purification of bio-diesel, sugar, food & beverages and many more...

The Preferred Choice

Our INDION range is backed by sustained focus on customer needs, intensive product and application R&D, sound technical support and wide application knowhow. Add to this continuous innovation, worldclass quality, state-of-the-art ISO 9001 & 14001 certified facilities, an FDA approved pharmaceutical grade resin manufacturing unit...and you get the perfect recipe that makes INDION the preferred choice across sectors for over five decades.

- Refinery & Petrochemical
- Steel, Power & Paper
- Food & Beverages
- Pharmaceuticals **Bio-technology & Electronics**
- Textiles, Sugar, Auto & Mini-steel
- Cement & Chemicals

INDION[°] Ion Exchange Resins

Properties and Applications - Summarised Data

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	
	INDION Co	Indus Indus	trial Water Tr cle Size Ion Ex		ns (CPS Resir	ıs)					
	Anion Exchange	Resin									
SBA	Gel	GS 3000 (Type 1)	Styrene DVB	$-N^+ R_3$	CI	0.42 - 1.2**	48 – 58	60 (OH)	1.3	Cl ⁻ to OH ⁻ 25 – 30	De Co
(Cation Exchange	Resins						1			
SAC	Gel	2250 Na	Styrene DVB	-SO ₃ ⁻	Na+	0.42 – 1.2**	43 – 50	120	2.0	Na ⁺ to H ⁺ 8 approx.	Pre
JAC	Gei	2250 H	Styrene DVB	-SO3_	H+	0.42 – 1.2**	49 – 55	120	1.8	Na ⁺ to H ⁺ 8 approx.	Pre
		Industrial V	Vater Treatme	ent							
	Anion Exchange	Resins									
		FF-IP (Type 1)	Crosslinked Polystyrene	$-N^+ R_3$	CI ⁻	0.3 – 1.2	47 – 55	60 (OH)	1.2	Cl ⁻ to OH ⁻ 10 – 15	De
	lsoporous	FF–IP (MB)	Crosslinked Polystyrene	$-N^+ R_3$	CI ⁻	0.3 – 1.0	47 – 55	60 (OH)	1.2	Cl ⁻ to OH ⁻ 10 – 15	Us
-		N–IP (Type 2)	Crosslinked Polystyrene	$-N^+ R_3$	CI	0.3 - 1.2	45 – 53	40 (OH)	1.2	Cl ⁻ to OH ⁻ 10 – 15	De
		GS 300 (Type 1)	Styrene DVB	-N+ R3	CI	0.3 - 1.2	48 – 58	60 (OH [_])	1.3	Cl ⁻ to OH ⁻ 25 – 30	De co
	Gel	GS 300 (OH)	Styrene DVB	$-N^+ R_3$	OH-	0.3 – 1.2	60 – 70	60 (OH)	1.0	Cl ⁻ to OH ⁻ 25 – 30	Pre de
SBA		GS 400 (Type 2)	Styrene DVB	-N+ R3	CI	0.3 - 1.2	45 – 51	40 (OH ⁻)	1.2	Cl ⁻ to OH ⁻ 10 – 15	De
		810 (Type 1)	Styrene DVB	-N+ R3	CI	0.3 - 1.2	56 - 63	60 (OH)	1.0	Cl ⁻ to OH ⁻ 15 – 20	De
		810 HC (Type 1)	Styrene DVB	$-N^+ R_3$	CI [_]	0.3 - 1.2	47 – 55	60 (OH)	1.2	Cl ⁻ to OH ⁻ 10 - 20	Pre co
	Macroporous	810 SO ₄	Styrene DVB	-N R ₄ ⁺	SO ₄	0.42 - 1.2	56 – 63	60 (OH ⁻)	1.0 (CI ⁻)	Cl ⁻ to OH ⁻ 15 – 20	Us
	·	830 (Type 1)	Styrene DVB	-N+ R3	CI ⁻	0.3 - 1.2	57 – 66	80 (CI)	0.95	Cl ⁻ to OH ⁻ 7 – 17	Re
		820 (Type 2)	Styrene DVB	-N+ R3	CI ⁻	0.3 - 1.2	54 - 61	40 (OH ⁻)	1.0	Cl ⁻ to OH ⁻ 10 – 15	De
		820 HC (Type 2)	Styrene DVB	-N+ R3	CI ⁻	0.3 - 1.2	46 - 53	40 (OH ⁻)	1.2	Cl ⁻ to OH ⁻ 10 – 20	Pre co
WBA	Macroporous	850	Styrene DVB	$\begin{array}{c} -N \ R_2 \\ -N^+ \ R_3 \end{array}$	Free base	0.3 – 1.2	44 – 52	60 (FB)	1.5	FB to hydrochloride 25 max	Re
(Cation Exchange	Resins	I			1	1		1		
		220 Na	Styrene DVB	- SO ₃ -	Na+	0.3 - 1.2	50 – 55	120	1.8	Na ⁺ to H ⁺ 8 approx.	Sto
		222 Na	Styrene DVB	- SO ₃ ⁻	Na+	0.3 – 1.2	47 – 53	120	1.92	Na ⁺ to H ⁺ 8 approx.	Pre
SAC	Gel	223 H	Styrene DVB	- SO ₃ -	H+	0.3 - 1.2	49 – 55	120	1.9	Na ⁺ to H ⁺ 8 approx.	Pre in
		225 H	Styrene DVB	- SO ₃ ⁻	H+	0.3 – 1.2	49 – 55	120	1.8	Na ⁺ to H ⁺ 8 approx.	Pre

* meq/dry g

** effective size: 0.50-0.65 (mm)

Applications

Demineralisation in co-current and countercurrent mode. Condensate polishing & caprolactum purification.

Premium grade cation exchange resin for water softening.

Premium grade cation exchange resin for demineralisation.

Demineralisation in co-current and countercurrent mode.

Jsed in mixed bed.

Demineralisation in co-current and countercurrent mode.

Demineralisation in co-current and countercurrent mode. condensate polishing & caprolactum purification.

remium grade anion exchange resin used for demineralisation in regenerable mixed bed application.

Demineralisation in co-current and countercurrent mode.

Demineralisation in co-current and countercurrent mode.

Premium grade anion exchange resin for demineralisation in co-current and countercurrent mode.

Jsed in condensate polishing unit.

Removal of organics & colour from water.

Demineralisation in co-current and countercurrent mode.

Premium grade anion exchange resin for demineralisation in co-current and countercurrent mode.

Removal of strong acids from water.

Standard grade cation exchange resin for water softening.

Premium grade cation exchange resin for water softening.

Premium grade cation exchange resin for demineralisation n regenerable mixed bed application.

Premium grade cation exchange resin for demineralisation.

SAC: Strong Acid Cation, SBA: Strong Base Anion, WBA: Weak Base Anion, WAC: Weak Acid Cation, SPL : Speciality

INDION° Ion Exchange Resins

Properties and Applications - Summarised Data

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	
	Cation Exchange		Nater Treatmo	ent							
		225 Na	Styrene DVB	- SO ₃ -	Na+	0.3 – 1.2	43 – 50	140	2.0	Na+ to H+ 8 approx.	Pre
		525 H	Styrene DVB	-SO3_	H+	0.3 - 1.2	44 - 49	120	1.95	Na ⁺ to H ⁺ 6 approx.	Sp for
		525 Na	Styrene DVB	-SO3_	Na+	0.3 – 1.2	38 - 44	130	2.15	Na ⁺ to H ⁺ 6 approx.	Pre
	Gel	225 Na F	Styrene DVB	-SO3_	Na+	0.3 - 1.2	43 - 50	120	2.0	Na⁺to H⁺ 8 approx.	In wc to cei
SAC		222 Na F	Styrene DVB	- SO ₃ -	Nα+	0.3 – 1.2	47 – 53	120	1.92	Na+to H+ 8 approx.	In wc to 37
		222 Na BL	Styrene DVB	- SO ₃ ⁻	Na+	0.3 – 1.2	46 – 51	120	1.9	Na+ to H+ 8 approx.	So po
		303	Styrene DVB	- \$0 ₃ ⁻	H+	0.3 – 1.2	49 – 55	120	1.8 (H ⁺)	Na ⁺ to H ⁺ 8 approx	Cc of
		730	Styrene DVB	- SO ₃ ⁻	H+	0.3 – 1.2	54 – 57	120	1.6 (H ⁺)	Na+ to H+ 2 – 6	Re
	Macroporous- SPL	790	Styrene DVB	- \$O ₃ ⁻	H⁺	0.3 - 1.2	51 – 55	120	1.8 (H ⁺)	Na+ to H+ 2 – 6	De co
		790 C	Styrene DVB	$-SO_3^-$	H+	0.42 - 1.2	51 – 55	120	1.7	Nato H 6	Us
VAC	Gel	236	Crosslinked Polyacrylic	- COO ⁻	H⁺	0.3 – 1.2	46 – 54	120	4.0	H+ to Na+ 80 – 120	Re
	Macroporous	662	Methacrylic DVB	- COO ⁻	H+	0.3 – 1.2	44 – 50	100	3.8	H+ to Na+ 70 max	Re
	Mixed Bed Resin			1	1	1					
		MB 6SR/ Refill Pack	Styrene DVB	- SO ₃ ⁻ - N ⁺ R ₃	H⁺ OH [−]	0.3 – 1.2	-	60	-	-	Su ult
		MB - 11	Styrene DVB	- SO ₃ - N ⁺ R ₃	H⁺ OH [−]	0.3 – 1.2	-	60	-	-	1: pro
		MB – 11 GMB	Styrene DVB	- SO ₃ - - N ⁺ R ₃	H⁺ OH [−]	0.3 – 1.2	-	60	-	-	Nc wa
		MB – 12	Styrene DVB	- SO ₃ ⁻ - N ⁺ R ₃	H⁺ OH [−]	0.3 – 1.2	-	60	-	-	1:: an wa
		MB – 115	Styrene DVB	$-SO_{3}^{-}$ $-N^{+}R_{3}$	H⁺ OH [−]	0.3 – 1.2	-	60	-	-	40 pu
		MB 151	Styrene DVB	- SO ₃ ⁻ - N ⁺ R ₃	H⁺ OH [−]	0.3 – 1.2	-	60	-	-	No
		MB 1150 HP	Styrene DVB	- SO ₃ ⁻ - N ⁺ R ₃	H⁺ OH [−]	0.42 - 1.2**	-	60	-	-	Pro inc
(Oil Removal Res		T	1	1	1			I	1	
	SPL	Oleophilic Resin	Styrene DVB	- \$O ₃ ⁻	Na+	0.3 – 1.2	35 – 41	120	1.6 to 1.7	-	Oil pet
	′dry g								SAC: Strong Acid Cation	, SBA: Strong Base A	Anion,
* ette	ctive size: 0.50-0.6	5 (mm)									

Applications

Premium grade cation exchange resin for water softening.

Special grade cation exchanger for use in layered bed and or mixed bed condensate polishing.

remium grade cation exchange resin for water softening.

n the treatment of foodstuffs, beverages, potable water and vater used in the processing of food. This product conforms o NSF / ANSI / CAN 61, NSF / ANSI / CAN 372 & is certified with IAPMO R&T.

n the treatment of foodstuffs, beverages, potable water and vater used in the processing of food. This product conforms o NSF / ANSI / CAN 61, NSF / ANSI 44, NSF / ANSI / CAN 872 & is certified with IAPMO R&T.

Solvent free cation – in the treatment of foodstuffs, beverages, botable water and water used in the processing of food.

Colour indicating resin. Colour changes at the time of exhaustion.

Recovery of metals from aqueous and non-aqueous streams.

Demineralisation in co-current, countercurrent mode and condensate water treatment.

Jsed in condensate polishing unit.

Removal of alkaline hardness from water.

Removal of alkaline hardness from water.

Super-regenerated mixture of cation and anion for producing Iltrapure water.

1:1 volume ratio of cation in H⁺ and anion in OH⁻ to produce high purity demineralised water.

Non-regenerable mixed bed application where highest quality vater is required. Colour changes at the time of exhaustion.

1:2 stoichiometrically equivalent volume ratio of cation in H⁺ and anion in OH⁻ to produce high purity demineralised vater.

40:60 volume ratio of cation and anion to produce high purity demineralised water.

Non-regenerable EDM application.

Production of high purity water in electronic & pharma ndustry.

Dil removal from steam condensate of petroleum refineries, petroleum products & water contaminated with hydrocarbon.

n, WBA: Weak Base Anion, WAC: Weak Acid Cation, SPL : Speciality

INDION° Ion Exchange Resins

Properties and Applications - Summarised Data

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	
			/ater Treatme	nt							
	Polyiodide Resin	1		1	1	1				1	
	SPL	SRCD I	Crosslinked Polymer impregnated with iodine	— N+ R3	₃	0.3 - 1.2	-	15 – 35	-	-	Di
	Arsenic and Iror	Removal Resir	1		1	1	1		1		
	SPL	ASM	Crosslinked Polystyrene	-	-	0.3 – 1.2	47 – 54	60	0.5 - 2.0 g As/l	-	Re to wi
	JFL .	ISR	Crosslinked Polystyrene	-	-	0.3 – 1.2	45 – 55	45	-	-	Re to wi
	Fluoride Removo	al Resin	1	1	1	1				1	
	SPL	RS-F	Styrene DVB	NA	-	0.3 – 1.2	50 – 60	60	-	-	Re
	Perchlorate Rem	oval Resin			1	1			Γ	1	
	SPL Cation Exchange	PCR	Crosslinked Polystyrene	$-NR_4^+$	CI ⁻	0.3 - 1.2	35 – 45	90 (Cl ⁻)	0.8	-	Se
	callon exchange	e kesins									Hi
		225 Na F	Styrene DVB	-SO ₃	Na+	0.3 – 1.2	43 – 50	140	2.0	Na+ to H+ 8 approx.	ar NS
SAC	Gel	2250 Na F	Styrene DVB	-SO3 ⁻	Na+	0.42 - 1.2**	43 – 50	140	2.0	Na+ to H+ 8 approx.	Hi ar N:
		222 Na NS	Crosslinked Polystyrene	- \$0 ₃ ⁻	Na+	0.3 – 1.2	43 – 49	120	1.9	Na+ to H+ 8 approx.	Wa CA Th
WAC	Microporous	266	Crosslinked Polyacrylic	- COO ⁻	H+	0.3 – 1.2	46 – 54	120	4.2	H+ to Na+ 65 max	Re
	Anion Exchange	Resin	1	1	1	1			1	1	
SBA	Macroporous	NSSR (Type 1)	Styrene DVB	$-N^+ R_3$	CI	0.3 – 1.2	45 – 55	100 (CI)	0.9	Cl ⁻ to NO ₃ ⁻ Negligible	Se co &
	Oxidation, Redu	ction Catalyst	1	1	I	1	1		1	1	
	SPL	ORC	-	-	-	0.3 – 1.2	45 – 55	-	-	-	Re
		Nuclear	Grade Resins	1							
	Cation Exchange	Resins									
		223 H NG	Styrene DVB	-SO ₃	H+	0.3 – 1.2	49- 55	120	1.9	-	Hi in
SAC	Gel	2230 H NG	Styrene DVB	-SO3 ⁻	H⁺	0.42 - 1.2**	49 – 55	120	1.9	-	Hi Us
		223 Li	Styrene DVB	-SO3_	Li+	0.3 – 1.2	47 – 53	120	1.9	-	Hi nu
	Anion Exchange	Resins		1	T	1	Γ		Γ	1	
SBA	Gel	ARU 104	Crosslinked Polystyrene	N+R ₃	CI ⁻	0.3 – 1.2	38 - 42	80	1.6	-	Re
		GS 300 NG	Styrene DVB	$-N^+R_3$	OH ⁻	0.3 – 1.2	60 max	60(OH ⁻)	1.1	-	Hi nu
	/dry g ect <mark>ive si</mark> ze: 0.50-0.	65 (mm)	6						SAC: Strong Acid Cation	, SBA: Strong Base A	nion,

Applications

Disinfection of potable water.

Removal of Arsenic from potable water. This product conforms to NSF / ANSI / CAN 61, NSF / ANSI / CAN 372 & is certified with IAPMO R&T.

Removal of dissolved Iron from water. This product conforms to NSF / ANSI / CAN 61,NSF / ANSI / CAN 372 & is certified with IAPMO R&T.

Removal of fluoride from water.

Selective removal of perchlorate from ground water.

High purity food grade resin for treatment of potable water and food stuff. This product conforms to NSF / ANSI / CAN 61, NSF / ANSI / CAN 372 & is certified with IAPMO R&T. High purity food grade resin for treatment of potable water and food stuff. This product conforms to NSF / ANSI / CAN 61, NSF / ANSI / CAN 372 & is certified with IAPMO R&T. Water softening application. This product conforms to NSF / ANSI / CAN 61, NSF / ANSI / CAN 372 & is certified with IAPMO R&T. The product is manufactured by a non solvent process.

Removal of alkaline hardness from water.

Selective removal of Nitrates from water. This product conforms to NSF / ANSI / CAN 61, NSF / ANSI / CAN 372 & is certified with IAPMO R&T.

Removal of halogens and oxidising agents.

High purity ion exchange resin (in hydrogen form) for use in nuclear power plants.

High purity CPS ion exchange resin (in hydrogen form) for use in nuclear power plants.

High purity ion exchange resin (in lithium form) for use in nuclear power plants.

Recovery of Uranium from leach liquors.

High strength strong base anion resin (Type I) for use in nuclear power plants.

n, WBA: Weak Base Anion, WAC: Weak Acid Cation, SPL : Speciality

INDION[®] Ion Exchange Resins

Properties and Applications - Summarised Data

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	
			Grade Resins								
	Anion Exchange	Resins									
SBA	Gel	GS 3000 NG	Styrene DVB	$-N^+R_3$	OH ⁻	0.42 – 1.2**	60 max	60 (OH)	1.1	-	l I
		GS 80	Crosslinked Polystyrene	$-N^+R_3$	- SO ₃ ⁻	0.3 – 1.2	47 – 55	-	0.8	-	(
1	Mixed Bed Resin	IS					•			•	_
		CAM - 14	Styrene DVB	-SO ₃ ⁻ -N ⁺ R ₃	H+ OH ⁻	0.3 - 1.2	-	60	-	-	ŀ
	Mixed Resins	CAM – 19	Styrene DVB	-SO ₃ -N ⁺ R ₃	Li+ OH ⁻	0.3 – 1.2	-	60	-	-	
		Catalyst	Grade Resins			1	1	I			-
	Cation Exchange										
	<u>-</u>	140	Styrene DVB	- SO ₃ ⁻	H+	0.42 - 1.2	<3	130	4.8*	-	(
	Macroporous	130	Styrene DVB	- SO ₃ -	H+	0.42 - 1.2	<3	130	4.8*	-	(1
SAC		190	Styrene DVB	- SO ₃ ⁻	H+	0.42 – 1.2	<3	130	4.7*	-	6
	Gel	770	Styrene DVB	- SO ₃ -	H+	0.3 – 1.2	63 – 66	120	1.3	-	(
-	Anion Exchange	Resin				-	·				
WBA	Macroporous	860	Styrene DVB	$-NR_2$ $-N^+R_3$	Free base	0.3 – 1.2	48 – 54 (FB)	60 (FB)	1.4	FB to hydrochloride 25 max	,
6		Hydro	metallurgy								
	Chelating Resins	5									
		MSR	Styrene DVB	Thiol	H+	0.3 – 1.2	38 - 43	60	3.6*	-	
		TCR	Styrene DVB	Thio-Uronium	_	0.3 – 1.2	41 – 47	80	1.4	-	
		BSR	Styrene DVB	Amino Phosphonic	Na+	0.42 – 1.2	60 - 70	80	2.0 (H+)	H ⁺ to Na ⁺ <45 H ⁺ to Ca ⁺⁺ <20	[
		BSRM	Styrene DVB	Amino Phoshonic & Iminodiacetic	Na+	0.4 - 1.2	60 - 67	80	2.1 (H+)	H ⁺ to Na ⁺ <45 H ⁺ to Ca ⁺⁺ <20	
		SIR	Styrene DVB	Iminodiacetic	Na+	0.3 – 1.2	52 – 58	90	2.2 (H+)	H ⁺ to Na ⁺ 40 max	f
	Cation Exchange	Resins					1			1	_
		790	Styrene DVB	-\$O ₃ ⁻	H+	0.3 – 1.2	51 – 55	120	1.8 (H ⁺)	Na+ to H+ 2 – 6	F
SAC	Macroporous	730	Styrene DVB	-\$O ₃ ⁻	H+	0.3 – 1.2	54 – 57	120	1.6 (H ⁺)	Na+ to H+ 2 - 6	F
		740	Styrene DVB	-\$O ₃ ⁻	H+	0.3 – 1.2	64 - 68	120	1.2 (H ⁺)	Na+ to H+ 2 - 6	F
WAC	Gel	236	Crosslinked Polyacrylic	- COO ⁻	H+	0.3 – 1.2	46 – 54	120	4.0	H+ to Na+ 80 – 120	F

* meq/dry g

** effective size: 0.50-0.65 (mm)

SAC: Strong Acid Cation, SBA: Strong Base Anion, WBA: Weak Base Anion, WAC: Weak Acid Cation, SPL : Speciality

Applications

High strength CPS strong base anion resin (Type I) for use in nuclear power plants.

Oxygen scavenging.

1:4 volume mixture of cation and anion to produce high purity alkaline water for use in nuclear power plants.1:9 volume mixture of cation and anion. Used in nuclear

power plants.

Catalyst for organic reactions like esterification etc.

Catalyst grade resin for esterification and alkylation reactions.

Premium catalyst for specialised applications such as esterification, alkylation etc.

Catalyst for manufacture of butyl acetate, ethylacetate, olefin hydration & bisphenol A.

As catalyst in aldolization reactions.

Selective adsorption of bivalent mercury from industrial effluents.

Selective recovery of mercury and precious metals.

Decalcification of secondary brine in chloralkali industry.

Brine softening in chloroalkali industry

Extraction and recovery of metals, removal of heavy metals from various organic or inorganic chemical products.

Recovery of metals from aqueous and non-aqueous streams.

INDION[®] Ion Exchange Resins

Properties and Applications - Summarised Data

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	
		Chemical Pr	ocess Applicati	ion							
	Anion Exchange	Resins									
	Gel	GS 300 (OH) (Type I)	Styrene DVB	$-N^+ R_3$	ОН	0.3 – 1.2	60 – 70	60 (OH)	1.0	Cl ⁻ to OH ⁻ 25 – 30	Re
	Gel	950 (Type I)	Cross linked Polyacrylic	$-N^+ R_3$	CI ⁻	0.4 – 1.2	54 – 64	80 (CI)	1.2	Cl ⁻ to OH ⁻ 25 – 30	Re
SBA	Macroporous	830 S (Type 1)	Styrene DVB	$-N^+ R_3$	CI	0.3 – 1.2	57 – 66	80 (CI [−])	0.95	Cl ⁻ to OH ⁻ 7 – 17	Re str &
	·	930 A (Type 1)	Crosslinked Polyacrylic	$-N^+ R_3$	CI [_]	0.3 – 1.2	65 – 72	80 (CI)	0.8	Cl ⁻ to OH ⁻ 10 – 15	Re
		845 (Type 1)	Styrene DVB	$-N^{+} R_{2} -N^{+} R_{3}$	-	0.3 - 1.2	52 - 58	60	1.1	Cl ⁻ to OH ⁻ 20 max	Tre glu
WBA	Macroporous	860 S	Styrene DVB	$-N^{+}R_{2}$ $-N^{+}R_{3}$	Free base	0.3 – 1.2	47 – 55 (FB)	60	1.3	FB to hydrochloride 25 max	Tre gl
VV DA		870	Styrene DVB	$-N^+ R_2$	Free base	0.3 – 1.2	48 – 58 (FB)	60	1.6	FB to hydrochloride 25 max	De
		880	Styrene DVB	$-N^+ R_2$ $-N^+ R_3$	Free base	0.3 – 1.2	52 – 58 (FB)	60	1.2	FB to hydrochloride 25 max	Сс
		890	Styrene DVB	$-N^{+} R_{2} -N^{+} R_{3}$	Free base	0.3 – 1.2	48 – 54 (FB)	60	1.4	FB to hydrochloride 25 max	Re ap
	Cation Exchange	Resins							1		
SAC	Macroporous	790	Styrene DVB	-SO3 ⁻	H⁺	0.3 – 1.2	51 – 55	120	1.8 (H+)	Na+ to H+ 2 - 6	Sp hig he
WAC	Macroporous	652	Methaacrylic acid DVB	COO [_]	H+	0.3 – 1.2	47 – 55	100	3.5	H ⁺ to Na ⁺ 75 min	Ide ter
	Gel	236 P	Crosslinked Polyacrylic	- COO ⁻	H+	0.3 – 1.2	46 – 54	120	4	H ⁺ to Na ⁺ 80 – 120	Re
	Mixed Bed Resin	1			1	1	1		1		
		GMW 11 (GVI)	Crosslinked Polystyrene	$-SO_3^{-}$ $-N^+R_2^{-}$	H⁺ OH [−]	0.3 - 1.2	-	60	-	-	Sp ap

* meq/dry g

SAC: Strong Acid Cation, SBA: Strong Base Anion, WBA: Weak Base Anion, WAC: Weak Acid Cation, SPL : Speciality

Applications

Removal and recovery from process streams.

Removal of high level of colour bodies from sugar syrup.

Removal of colour bodies from sugar syrup and other process streams. This product conforms to NSF / ANSI / CAN 61 & is certified with GOLD SEAL from WQA.

Removal of high level of colour bodies from sugar syrup.

Treatment of non-aqueous solution such as deashing of glucose, dextrose, sorbitol, gelatin & purification of MSG.

Treatment of non-aqueous solution such as deashing of glucose, dextrose, sorbitol, gelatin & purification of MSG.

Deacidification of process streams.

Colour removal from textile effluent.

Removal of strong acids in non water, pharma & speciality applications.

Special grade cation exchanger for applications demanding higher oxidation stability such as gelatin purification, heavy metal removal etc.

Ideal for the uptake of toxic / undesirable heavy metals, temporary hardness from process liquor and industrial water.

Removal of alkaline hardness from water in Beverage Industry.

Specially developed mix of resins for use in electroplating applications. Colour changes at the time of exhaustion.

INDION° Ion Exchange Resins

Properties and Applications - Summarised Data

Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	
	Pharmaceut	tical Grade Res	sins							
	254	Styrene DVB	-\$O ₃ ⁻	Na+	< 0.15	<u><</u> 10	-	-	-	Su
Active Pharmaceutical Ingredients (API's)	404	Styrene DVB	-SO3	Ca++	< 0.15	<u><</u> 8	-	-	-	Tro
ingreaterns (AFFS)	454	Styrene DVB	$-N^+ R_3$	CI⊤	>0.075 - 45% <0.15 - 1%	<u><</u> 12	-	1.8 – 2.2***	-	Cł lev ac
		I.			1		1	1		
	204	Crosslinked Polyacrylic	- COO ⁻	H+	< 0.15	<u><</u> 5	-	10.0*	-	Ta Rc B ₁
	214	Crosslinked Polyacrylic	- COO ⁻	H⁺	< 0.15	<u><</u> 5	-	10.0*	-	Ta
Speciality Excipient	234	Crosslinked Polyacrylic	- COO ⁻	K+	< 0.15	<u><</u> 10	-	-	-	Ta: Cł
Resins	254	Styrene DVB	-\$O ₃ ⁻	Na+	< 0.15	<u><</u> 10	-	-	-	Su
	264	Crosslinked Polyacrylic	- COO ⁻	H+	< 0.15	<u><</u> 5	-	10.0*	-	Sto
	294	Crosslinked Polymethacrylic	- COO ⁻	K+	< 0.15	<u><</u> 10	-	-	-	Tal of
	464	Crosslinked Polymethacrylic	- COO ⁻	H+	< 0.15	<u><</u> 5	-	10*	-	Ni

* meq/dry g

*** sodium glycocholate exchange capacity

Applications

Sustained release agent in drug formulations.

Treatment of Hyperkalaemia.

Cholestyramine resin – used for lowering serum cholesterol levels. Taste masking, drug stabilisation, controlled release & active ingredient.

Taste masking of bitter drugs such as Norfloxacin, Ofloxacin, Roxithromycin, Dicyclomine Hydrochloride, Famotidine and B₁₂ stabilisation etc.

Taste masking of bitter drugs such as Azithromycin

Taste masking of bitter drugs such as Ciprofloxacin, Chloroquine Phosphate etc. as well as tablet disintegration.

Sustained release agent in drug formulations.

Stabilisation of Vitamin B₁₂

Tablet disintegrant/taste masking. Product meets specifications of Polacrilin Potassium, USP.

Nicotine taste masking and sustained release.

SPL : Speciality

INDION[°] Ion Exchange Resins Properties and Applications - Summarised Data

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	
		Adsorbent	Grade Resi	าร							
	SPL	PA 500	Styrene DVB	-	-	0.3 – 1.2	63 – 67	150	-	-	Ρυ
		PA 600	Styrene DVB	-	-	0.3 – 1.2	55 – 65	130	-	-	Hi su
		PA 800	Styrene DVB	-	-	0.3 – 1.2	54 - 60	150	-	-	Ph
		PA 1200	Styrene DVB	-	-	0.4 - 1.2	52 - 62	120	-	-	Hi su
		Biodiesel Man	ufacture & Pu	rification							
		190	Styrene DVB	-SO3_	H+	0.42 – 1.2	<3	150	4.7*	-	Est
	SPL	BF 100	Styrene DVB	$-N^+ R_3$	OH_	0.3 – 1.2	63 – 75	-	0.8	-	Ρυ 0.3
		BF 170	Styrene DVB	Acidic	-	0.3 – 1.2	<u><</u> 3	-	-	-	Pu so

* meq/dry g

We offer several other speciality resins for a wide variety of applications. These include fine mesh resins for chromatographic separations; dessicant grade resins for moisture removal from sovlents & resins for peptide synthesis.

Applications

Purification of Aloe Vera juice and Methi extract.

High surface area polymers for recovering non-polar substances from aqueous and non aqueous streams.

Phenol removal from HCl and effluent.

High surface area polymers for recovering non-polar substances from aqueous and non aqueous streams.

Esterification of FFA.

Purification of raw bio-diesel to remove residual FFA from 0.5 - 1.0% to less than 0.1%.

Purification of raw bio-diesel for removal of glycerine, soap, moisture etc.

SPL : Speciality

